Publications

Export 261 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Dalmau, V., Egri, L., Hell, P., Larose, B., and Rafiey, A., Descriptive Complexity of List H-coloring Problems in Logspace: a Refined Dichotomy, Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science, 2015.
Dalmau, V., Krokhin, A. A., and Larose, B., Retractions onto series-parallel posets, Discrete Mathematics, vol. 308, 2008, pp. 2104-2114.
Dalmau, V., Constraint Satisfaction Problems in Non-deterministic Logarithmic Space, ICALP, 2002, pp. 414-425.
Dalmau, V., Gavaldà, R., Tesson, P., and Thérien, D., Tractable Clones of Polynomials over Semigroups, CP, 2005, pp. 196-210.
Dalmau, V., Boolean Formulas are Hard to Learn for most Gate Bases, ALT, 1999, pp. 301-312.
Dalmau, V., and Krokhin, A. A., Robust Satisfiability for CSPs: Hardness and Algorithmic Results, TOCT, vol. 5, 2013, p. 15.
Dalmau, V., Kolaitis, P. G., and Vardi, M. Y., Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics, CP, 2002, pp. 310-326.
Dalmau, V., and Jeavons, P., Learnability of quantified formulas, Theor. Comput. Sci., vol. 306, 2003, pp. 485-511.
Dalmau, V., and Larose, B., Maltsev + Datalog –$>$ Symmetric Datalog, LICS, 2008, pp. 297-306.
Dalmau, V., A Dichotomy Theorem for Learning Quantified Boolean Formulas, Machine Learning, vol. 35, 1999, pp. 207-224.
Dalmau, V., Generalized Majority-Minority Operations are Tractable, Logical Methods in Computer Science, vol. 2, 2006.
Dalmau, V., and Jonsson, P., The complexity of counting homomorphisms seen from the other side, Theor. Comput. Sci., vol. 329, 2004, pp. 315-323.
Dalmau, V., There are no pure relational width 2 constraint satisfaction problems, Inf. Process. Lett., vol. 109, 2009, pp. 213-218.
Dalmau, V., Krokhin, A. A., and Larose, B., First-order Definable Retraction Problems for Posets and Reflexive Graphs, J. Log. Comput., vol. 17, 2007, pp. 31-51.
Dalmau, V., A Dichotomy Theorem for Learning Quantified Boolean Formulas, COLT, 1997, pp. 193-200.
Dalmau, V., Linear datalog and bounded path duality of relational structures, Logical Methods in Computer Science, vol. 1, 2005.
Dalmau, V., A New Tractable Class of Constraint Satisfaction Problems, AMAI, 2000.
Dalmau, V., Krokhin, A., and Manokaran, R., Towards a characterization of constant-factor approximable Min CSPs, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2015, pp. 847–857.
Dalmau, V., Generalized Majority-Minority Operations are Tractable, LICS, 2005, pp. 438-447.
Dalmau, V., and Ford, D. K., Generalized Satisfability with Limited Occurrences per Variable: A Study through Delta-Matroid Parity, MFCS, 2003, pp. 358-367.
Dalmau, V., and Jeavons, P., Learnability of Quantified Formulas, EuroCOLT, 1999, pp. 63-78.
Dalmau, V., A new tractable class of constraint satisfaction problems, Ann. Math. Artif. Intell., vol. 44, 2005, pp. 61-85.
de la Rosa, T., Jiménez, S., Fuentetaja, R., and Borrajo, D., Scaling up Heuristic Planning with Relational Decision Trees, J. Artif. Intell. Res. {(JAIR)}, vol. 40, 2011, pp. 767–813.
de la Rosa, T., Jiménez, S., Fuentetaja, R., and Borrajo, D., Scaling up Heuristic Planning with Relational Decision Trees, CoRR, vol. abs/1401.3885, 2014.
de la Rosa, T., Jiménez, S., and Borrajo, D., Learning Relational Decision Trees for Guiding Heuristic Planning, Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling, {ICAPS} 2008, Sydney, Australia, September 14-18, 2008, 2008, pp. 60–67.

Pages